Computing Stieltjes constants using complex integration

نویسنده

  • Fredrik Johansson
چکیده

The Stieltjes constants γn are the coefficients appearing in the Laurent series of the Riemann zeta function at s = 1. We give a simple and efficient method to compute a p-bit approximation of γn with rigorous error bounds. Starting from an integral representation due to Blagouchine, we shift the contour to eliminate cancellation. The integral is then evaluated numerically in ball arithmetic using the Petras algorithm, with the use of a Taylor expansion for bounds near the saddle point. This appears to be the first algorithm for Stieltjes constants with uniformly low complexity with respect to both n and p. An implementation is provided in the Arb library. We can, for example, compute γn to 1000 digits in a minute for any n ≤ 10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Series of zeta values , the Stieltjes constants , and a sum

We present a variety of series representations of the Stieltjes and related constants, the Stieltjes constants being the coefficients of the Laurent expansion of the Hurwitz zeta function ζ(s, a) about s = 1. Additionally we obtain series and integral representations of a sum Sγ(n) formed as an alternating binomial series from the Stieltjes constants. The slowly varying sum Sγ(n) + n is an impo...

متن کامل

Series representations for the Stieltjes constants

The Stieltjes constants γk(a) appear as the coefficients in the regular part of the Laurent expansion of the Hurwitz zeta function ζ(s, a) about s = 1. We present series representations of these constants of interest to theoretical and computational analytic number theory. A particular result gives an addition formula for the Stieltjes constants. As a byproduct, expressions for derivatives of a...

متن کامل

New results on the Stieltjes constants: Asymptotic and exact evaluation

The Stieltjes constants γk(a) are the expansion coefficients in the Laurent series for the Hurwitz zeta function about s = 1. We present new asymptotic, summatory, and other exact expressions for these and related constants.

متن کامل

Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants

In the Laurent expansion ζ(s, a) = 1 s− 1 + ∞ ∑ k=0 (−1)γk(a) k! (s− 1) , 0 < a ≤ 1, of the Riemann-Hurwitz zeta function, the coefficients γk(a) are known as Stieltjes, or generalized Euler, constants. [When a = 1, ζ(s, 1) = ζ(s) (the Riemann zeta function), and γk(1) = γk.] We present a new approach to high-precision approximation of γk(a). Plots of our results reveal much structure in the gr...

متن کامل

What is the complexity of Stieltjes integration ? Arthur

We study the complexity of approximating the Stieltjes integral R 1 0 f (x) dg(x) for functions f having r continuous derivatives and functions g whose sth derivative has bounded variation. Let r(n) denote the nth minimal error attainable by approximations using at most n evaluations of f and g, and let comp(") denote the "-complexity (the minimal cost of computing an "-approximation). We show ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018